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The fluid mechanics of heart-valve motion isinvestigated experimentally and theoretic- 
ally. From the experiments, it is found that the principal mechanism ensuring optimal 
mitral-valve closure is the pressure field induced by a strong flow deceleration through 
the valve. A complete theory, evolved from the Bellhouse & Talbot analytical model, 
is developed for both the mitral and the aortic valve to provide a relationship between 
valve motion and valve flow. Results predicted by this theory agree consistently well 
with those obtained from experiments. 

1. Introduction 
In  their healthy state, the valves of the heart are remarkably efficient devices, 

offering very little resistance to flow when open, and capable of closing in response 
to small pressure differences and with a negligible amount of regurgitated flow. They 
are essentially passive organs whose motions are due mainly to the fluid-dynamical 
forces exerted upon them, and for this reason the analysis of these forces is a requisite 
for understanding the functioning of the valves in both healthy and diseased states. 
The valves are of two types: the atrioventricular valves (tricuspid and mitral), which 
separate the atria and ventricles of the right and left heart, and the semilunar valves 
(pulmonic and aortic), which regulate the outflow from the right and left ventricles. 
Our discussion here will focus on the aortic and mitral valves of the left heart, but our 
general conclusions will be equally applicable to the tricuspid and pulmonic valves. 

The aortic valve consists of three thin crescent-shaped cusps (whence the name 
semilunar) which in the open position are displaced outwards to line up approximately 
with the portion of the aorta distal to the valve. In the closed position the adjacent 
distal margins of the three cusps come together along three radii 120" apart to seal the 
aortic orifice. Behind the cusps the aortic root forms bulges called the sinuses of 
Valsalva, which, as reported by Bellhouse & Talbot (1969), play a role in the closure 
mechanism of the valve. The pulmonic valve has a similar structure. 

The mitral valve consists of two main thin membranous cusps of roughly trapezoidal 
shape which originate from the slightly elliptical mitral ring to form in the open 
position a truncated and scalloped cone-like structure. The distal margins of the two 
cusps have an irregular appearance owing to the insertion of the chordae tendineae 
(string-like fibrous structures connecting the valve cusps to the ventricular wall), 
which originate from the papillary muscles of the ventricular wall. The cusp adjacent 
to the aortic valve is designated as the anterior or aortic cusp while the one closer 
to the ventricular wall is designated as the posterior or mural cusp. On closure, the 
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free edge of one cusp is pressed against that of the other to  seal the valve. The mor- 
phology of the tricuspid valve is similar to that of the mitral valve, except that three 
major cusps can be identified. Beautiful illustrations of all four valves of the heart 
can be found in Netter (1974). 

Owing to frequent diagnosis of valvular incompetence in association with cardio- 
pulmonary malfunctions, the motions of heart valves have attracted a considerable 
amount of attention on the part of physiologists and physicians. In  fact, the first to 
explore the nature of heart-valve operation were two physiologists, Henderson & 
Johnson (1912), who used simple yet illustrative in vitro experiments which provided 
fairly accurate descriptions of the dynamics of valve closure. They described the 
closure mechanism as a ‘breaking of a jet ’, although they recognized that the mech- 
anism they described was due to ‘pressure produced within the ventricles by the 
inertia of the jet’. As illustrated in figure 1, in one of their experiments dye was 
allowed to run down along tube A into a large reservoir B within which a jet of dye 
was visible. As the flow in A was halted, the jet in B conserved its forward motion 
and hence broke away from the fluid in tube A while clear water around the jet was 
drawn suddenly into its wake in the vicinity of the tube opening. When a flexible 
sleeve was attached to the end of the tube, the inward-moving reservoir fluid caused 
the sleeve to collapse and seal the tube. Regrettably, their conclusions were for the 
most part unappreciated or misinterpreted by subsequent researchers. 

Fluid-dynamical investigations of heart-valve motions were reported by Bellhouse 
& Bellhouse (1969, 1972). From their two consecutive model experiments on the 
motions of aortic and mitral valves, conclusions were derived with a view somewhat 
different from that of Henderson & Johnson. Whereas Henderson & Johnson stated 
that efficient valve closure could be accomplished by cessation of flow through the 
valve orifice in the absence of eddy motion, Bellhouse & Bellhouse stressed that, in 
addition to flow deceleration through the valves, vortical flow which developed 
around heart valves before their closure played an essential role in optimal valve 
functioning. Though no deficiency has been found in the concepts of Henderson & 
Johnson, many present researchers appear to favour the Bellhouse & Bellhouse 
‘vortex ’ theory. It may be remarked however that there is no fundamental disagree- 
ment in fluid-dynamical principles between the Henderson-Johnson and Bellhouse 
approaches. Explanations of fluid motions in terms of momentum-pressure arguments 
or vorticity arguments can be equally valid, and it is generally a matter of personal 
preference and convenience as to which one is used; some situations lend themselves 
more naturally to one, some to the other. The only question is whether the flow model, 
be i t  a vorticity or a pressure-momentum one, predicts accurately the behaviour of 
the physical flow. 

Lee (1977) pointed out that some of the observations made from the Bellhouse & 
Bellhouse experiments were not entirely conclusive. I n  brief, their aortic experiment 
did not completely verify the importance of the sinus vortex in valve closure because 
the effect of viscosity in inhibiting flow behind the valve cusps in their sinus-less valve 
was not considered. The existence of this uncertainty was further supported by the 
report of Bellhouse et al. (1973) and that of Spaan et al. (1975). I n  the Bellhouse & 
Bellhouse investigation of mitral-valve functioning, the observation that valve 
closure was delayed when the ventricular volume was increased was attributed to  a 
decrease in strength of the ventricular vortex in valve closure. However, the same 
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FIGURE 1. The experiment of Henderson & Johnson (1912). (a)  An initially steady jet. 
( b )  The ‘ breaking of a jet ’ phenomenon occurred after the tube was pinched. 

conclusions can be reached concerning the relationship between valve response and 
ventricular volume for other assumed velocity distributions within the ventricle, as 
for example, the assumption of uniform kinetic energy density. 

The theory developed by Bellhouse & Talbot (1969) was the first mathematical 
approach making use of fluid-dynamical principles to  describe aortic-valve functioning. 
A vortical flow field in the form of the classical Hill spherical vortex was assumed for 
the fluid motion in the aortic sinuses. The analysis was found to be quite successful 
in predicting the pressure differences across the cusp when compared with those 
measured in the model experiment of Bellhouse & Bellhouse (1969). However, they 
did not attempt to solve for the theoretical valve motion although the theory could 
be used to do so. The theory of Bellhouse & Bellhouse derived for the calculation of 
mitral-valve motion was essentially the same model as was used by Bellhouse & 
Talbot for the aortic valve. The results of their study suggested that the theory 
qualitatively described mitral-valve behaviour, but some improvements in its 
accuracy were required for any further practical application. Peskin (1972), on the 
other hand, carried out numerical analysis of the full equations of motion, for a 
two-dimensional model of the ventricle, without making any a priori assumptions as 
to the structure of the flow. Although his results cannot be directly applied to model 
or physiological experiments because of the two-dimensionality of his analytical 
model, they do show some very interesting details of the flow field within the ventricle, 
such as the ‘breaking of the jet’ phenomenon during valve closure. I n  his numerical 
experiments, Peskin found that i t  was necessary to provide mathematical constraints 
on the valve cusps in order to  prevent them from opening too much. This condition 
was not observed in the Bellhouse & Bellhouse experiment. It should be pointed out 
that computational limitations restricted Peskin’s calculations to  a rather low 
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Reynolds number, in contrast to the higher values in the physiological range used 
in the Bellhouse & Bellhouse experiment. At low Reynolds numbers jets issuing from 
orifices diverge farther than at high Reynolds numbers, which may be the explanation 
for these different conclusions concerning the role of the chordae tendineae in providing 
restraints on valve cusp motion. 

We present in the following a portion of our experimental studies on the motion of 
the mitral valve in an attempt to  resolve some of the questions mentioned earlier. 
Guided by the results of these experiments, the original Bellhouse 6 Talbot theory 
was modified such that theoretical calculation of mitral- or aortic-valve motion can be 
achieved with higher accuracy. Moreover, the influences on mitral-valve behaviour of 
specific physical parameters are also demonstrated using the modified theory. The 
clinical importance of an accurate theoretical model should be noted. As will be 
reported elsewhere, we have found that it is possible from our theory to predict the 
flow through heart valves, and hence measure cardiac output, from echocardiographic 
measurements of valve motion. 

2. Experiment 
A mechanical model bearing geometrical and dynamical similarity to a typical 

human left heart was employed in our experimental investigations, which are reported 
in detail by Lee (1977). As illustrated in figure 2,  the focal point of our experiment 
was the ventricle of the heart model, which was connected to a compliance-resistance 
mock circulatory network. Plexiglas and clear silicone rubber were selected as the 
materials for the model owing to their optical transparency, which facilitated flow 
visualization. The aortic-valve prototype, which had a leak factor of only 4ml per 
100 ml stroke volume, resembled closely the one described by Bellhouse & Bellhouse 
(1969). The competence of this valve was necessary to ensure disturbance-free motion 
of the anterior mitral leaflet because aortic regurgitation is known to induce abnormal 
early closure of this cusp. Several mitral-valve prototypes were tested before we 
finally reached a satisfactory design for a fairly two-dimensional model, as shown in 
figure 3. This mitral valve consisted of two rigid Plexiglas valve cusps which were 
mounted on a frame provided with parallel triangular side walls and containing a 
round orifice. The valve hinges were made of very flexible thin plastic sheeting and 
permitted the cusps to open to well beyond an included angle of 180". Apart from 
their hinges, the cusps were unconstrained. Compressed air and a vacuum formed the 
power source for the synchronous pumping actions of the atrium and ventricle, 
through the control of a dual electronic pneumatic heart pump that allowed variation 
of the heart rate, systole-to-diastole time ratio, contractility and atrial systole-to- 
ventricular systole time interval. This model, whose dynamics are shown in figure 4, 
was found to be quite successful in duplicating physiological pressure and flow wave 
forms. 

For a pulsatile system such as Qur heart model, dynamical similarity requires the 
Reynolds number Re = U L / v  and Strouhal number S = L/UT of the model to match 
those of the human system, where U is a typical velocity of the system, L is a typical 
dimension, T is the period of the heart cycle and u is the kinematic viscosity of the 
circulating fluid. We shall use the subscripts p and m to denote the physiological 
system and the model respectively. Since Lp was equal to L, by design and Tp was 
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FIGURE 2. Schematic diagram of the model left heart and circulatory network. 

FIGURE 3. Schematic diagram of the model mitrsl valve. 

chosen equal to Tm/3.5 from preliminary tests (model frequency 20 beats/min and 
human sinus rhythm 70 beats/min), the conditions Re, = Re, and S, = S, could be 
satisfied if and only if vp = 3 . 5 ~ ~  and Up = 3.5CL. Hence a fluid with a viscosity 3.5 
times less than that of blood was needed. Furthermore, the application of electro- 
magnetic flowmetry and hydrogen-bubble flow-visualization necessitated an ionic 
solution. Saline meets these two criteria and i t  was therefore chosen as the working 
fluid. The requirement U, = 3.5Um was automatically satisfied since U cc stroke 
volume/(period x area). 

The hydrogen-bubble technique employed for flow visualization is shown schematic- 
ally in figure 2. We focused our attention mainly on the time-varying two-dimensional 
flow patterns observed on the ‘plane of symmetry’ (the geometrically defined plane 
which vertically divided the ventricle into two equal halves along the atrial-aortic 
orientation). The ventricular-wall motion, mitral-valve motion and bubble move- 
ments, which represented local fluid velocities, were recorded on 16 mm film by high- 
speed cinematography using a Redlake Locam movie camera a t  100 frames/s, as well 
as on 35mm stills taken with a Topcon SLR camera equipped with an electronic 
variable-delay camera shutter control which was synchronized with the pneumatic 
pump. I n  order to reference the timing of the valve movements, two small lights 
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rate = 18 beats/min, systole-to-diastole time ratio = 4 and stroke volume = 80ml. A ,  denotes 
aortic pressure, V ventricular pressure, At atrial pressure and A atrial contraction. 
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electronically triggered by the onset of the ventricular and atrial pumps respectively 
were also recorded on the films. The films were analysed on a Vanguard Motion 
Analyzer and the resulting digitized data were finally reduced using a CDC6400 
computer. Special computer codes were developed to  correct for optical refractive 
distortions in the visual locations of the bubbles and of the mitral-valve cusps within 
the inverted-bell-shaped ventricle, as well as to carry out the integration for the 
ventricular volume using its shape profile obtained from the film records. Because of 
the axial symmetry of the model ventricle, this volume calculation was found to be 
sufficiently accurate to permit determination of the amount of regurgitation which 
occurred during mitral-valve closure. 

I n  addition to the photographic methods, pressure and flow measurements were 
recorded on an eight-channel strip-chart recorder (Beckman RM Dynagraphic) using 
standard equipment such as a Miller catheter-tip pressure gauge, Hewlett-Packard 
differential pressure transducers 276BC, and a directionally sensitive square-wave 
electromagnetic flowmeter (Carolina Medical Electronics, Inc.) incorporating an 
extracorporeal probe and a catheter-tip velocity probe. 

Our first experiment was to explore the nature of pulsatile flow through the mitral 
orifice and within the ventricle, with and without a mitral valve. As shown in figure 5 
(plate 1, without a mitral valve) and figure 6 (plate 2, with a mitral valve), two series 
of photographs were taken under the same experimental conditions (heart rate 20 
beats/min, stroke volume 80 ml, systole-to-diastole time ratio +, peak velocity 
20 cm/s and no atrial contraction). One can observe appreciable similarities between 
these two cases, for example the formation of a smoke-ring-type starting vortex, the 
early descent of this vortex to the lower and outer portion of the ventricle, the 
straightness of the fully developed mid-diastolic jet, which was surrounded by 
relatively stationary fluid, and the ‘breaking of the jet ’ phenomenon after the onset 
of flow deceleration. From this observation, i t  is apparent that the ‘breaking of the 
jet ’ phenomenon is indeed an intrinsic property of pulsatile flow through an orifice. 
These similarities suggest that valve cusps can be viewed as passive devices which 
‘float ’ in response to local fluid motions. The circulatory fluid motion observed in the 
ventricle after the onset of flow deceleration is probably the consequence of the 
adverse pressure gradient associated with the decelerating flow in the jet. This 
pressure field, which is also impressed on the relatively stationary fluid around the jet, 
would tend to move fluid upwards and then inwards behind the cusps, thereby forming 
a pattern of flow similar to a vortex, as envisioned in the Bellhouse model. (Whether 
this flow pattern is the result rather than the cause of the ‘breaking of the jet ’ pheno- 
menon is really more a matter of semantics than fluid mechanics.) 

It can be seen from figure 6 ( b )  that the starting vortex generated a t  the time of 
valve opening is confined to the lower and outer portion of the ventricle throughout 
the period of quasi-steady mid-diastolic flow. During this period, there is no significant 
fluid motion behind the valve cusps, which themselves exhibit little movement. 
However, at about 50-100ms after the onset of flow deceleration, as seen in figure 
6 (c), motion in the ventricle towards the valve cusps is initiated as they begin to close. 
The overall appearance of the flow within the ventricle is now circulatory, similar to 
that proposed by Bellhouse & Bellhouse. However, this circulatory motion is not due 
to the starting vortex, but rather, as mentioned above, connected with the pressure 
field which causes the deceleration of the jet flow through the valve since the diffusion 
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FIGURE 7 .  Flow deceleration at valve orifice and hydrodynamical pressure 
differences measured at specified locations inside the ventricle. 

time necessary for the existing starting vortex to expand to fill the ventricle is of the 
order of several hundred seconds. 

It may be observed, as was also concluded by Bellhouse & Bellhouse (1972), that 
the closure mechanism operates efficiently without the need for forces applied to the 
free margins of the mitral-valve cusps, such as might be provided by chordae tendineae. 
Nor do restraints appear to be necessary to prevent over-opening of the valve, since 
the valve cusps align themselves with the boundaries of the nearly parallel jet issuing 
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FIGURE 8. Effect of Strouhal number S on mitrrtl regurgitation R.  

from the valve in mid-diastole. I n  case of the physiological valve, thechordae tendineae 
are necessary to prevent mitral prolapse during ventricular systole, but we do not 
feel that  they contribute actively to the closure process under normal physiological 
conditions. 

The hydrodynamical pressure-difference measurements (hydrostatic pressure 
variations have been subtracted out) across the aortic cusp and throughout the entire 
ventricle, when compared with the time derivative of the mitral orifice velocity, as 
shown in figure 7, provided further evidence to support our view that flow deceleration 
is the dominant agent for optimal valve closure. It is apparent that  very little pressure 
variation occurred in the fluid behind the cusps and outside the diastolic jet, but more 
appreciable pressure differences were registered between positions behind the cusps 
and the mitral orifice and were roughly proportional to the measured flow decelerations. 

The effect of flow deceleration was then studied by separately varying the active 
diastolic period, heart rate and stroke volume. To summarize the results of these 
studies non-dimensionally, we define a Strouhal number S = E/U,,, T and a dimen- 
sionless regurgitation index R = V,/ra2C&,,,T, where 1 is the valve length in cm, 
U,,, is the peak velocity at the mitral orifice in cm/s, T is the period of the cardiac 
cycle in seconds, a is the orifice diameter in centimetres and V, is the backflow volume 
in millilitres measured in the tests during valve closure. The data obtained are plotted 
in figure 8. One observes that, despite the considerable amount of scatter, there is a 
positive correlation between S and R, 

Investigations were also carried out of the effect of ventricular volume on valve 
closure. The results showed that valve closure was slightly delayed by an increase in 
ventricular volume. Similar results were reported by Bellhouse & Bellhouse (1972). 
However, in contrast to their inference that the delay in closure might intensify the 
amount of regurgitation, we found little change in valve efficiency. I n  our experi- 
ments, the pressure variation around the jet inside the ventricle was found to be of 
the order of 0.1 tom, whereas the pressure difference between positions behind the 
valve cusps and the mitral orifice was of the order of 1 torr. I n  other words, we had a 
deceleration-dominated valve closure, and the effects of changes in the ventricular 
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volume were negligible. In  the Bellhouse experiment, however, the dimensionless flow 
deceleration through the valve was consistently lower than that in our tests, and in 
fact in the early stages of valve closure the deceleration-actuated pressure difference 
p,-pl across the valve cusps was of the same order of magnitude as the pressure 
difference p ,  -p4 within the ventricle. An increase in ventricular volume results in a 
decrease in p3 -p4. Since in the Bellhouse experiments the contribution of the pressure 
differencep, -p4 to an overall typical pressure difference p4 -p, between the ventricle 
and the orifice was larger than in our experiments, it is not surprising that they 
observed larger changes in valve closure with changes in ventricular volume than we 
did. In  the case of physiological valves, however, flow deceleration normally occurs 
quite abruptly and is relatively high, therefore we anticipate no significant effects 
on the valve functioning due to variations in ventricular end-diastolic volume within 
its physiological range 100-300 ml. 

3. Theory 
Our experimental investigations have pointed the way to several possible modifica- 

tions to the Bellhouse & Bellhouse (1972) theoretical model for the mitral valve, 
which was evolved from the Bellhouse & Talbot (1969) aortic-valve theory. First, we 
found that the Bellhouse inviscid model fails to predict the valve opening process. 
The differential equation based on mass, momentum and energy balances for quasi- 
one-dimensional inviscid flow which is obtained by Bellhouse & Bellhouse for the 
opening process possesses a singularity at h = 0, the initial condition for the opening 
(see below). When we avoided this singularity by using experimental data to start 
the integration a t  a later time where h was finite (typically A = 0.1 and O-Z), the 
solution h(7) for valve cusp position ws. time was found to overshoot the actual fully 
opened configuration by as much as 30%. This was not the result of a defect in the 
numerical integration scheme, since we used a fourth-order Runge-Kutta method 
and obtained satisfactory convergence. 

We believe that the reason why the inviscid model fails to predict adequately the 
valve opening process is that viscous effects play a central role in this process. We 
noted earlier the similarities in the starting flow through the mitral orifice with and 
without a valve (figures 5 and 6).  In  both instances the jet entering the ventricle was 
essentially parallel (non-divergent), evidently because of flow separation at the orifice. 
Since separation is a viscous phenomenon not accounted for in the inviscid analysis, 
it  is not surprising that the inviscid model of valve opening does not give satisfactory 
results. To describe the opening process adequately, one might attempt to formulate 
a model including viscous effects, but this would be difficult. We have chosen 
therefore to represent the effect of viscosity in the opening process in terms of 
its consequences: the essential parallelism of the jet, which leads to the assumption 
that during valve opening the velocity u2 a t  the free margins of the valve cusps is 
approximately equal to the velocity u1 a t  the valve orifice. This assumption together 
with continuity relations leads to a simple yet accurate description of the opening 
process. 

During valve closure, however, viscous effects appear not to play a significant role. 
The flow configuration during closure is that of a convergent channel, and the Reynolds 
number based on channel width a t  the start of closure is of the order of 5000. Hence 
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the boundary layers formed on the interior surfaces of the valve cusps will be thin 
compared with the channel width, and the flow within the closing valve will be 
essentially inviscid. Only when the closure is almost complete are the cusp boundary- 
layer thicknesses comparable with the channel width. During closure, as well as 
during mid-diastole, the vorticity generated within the boundary layers formed on 
the interior surfaces of the valve cusps will be convected into the ventricle in the form 
of a vortex sheet surrounding the diastolic jet flow issuing from the valve, but in the 
quasi-one-dimensional model which we have adopted to describe the closure process 
the detailed structure of the jet flow into the ventricle is not considered. 

Since our experiments indicated that the time history of the circulatory motion 
within the ventricle was different from that assumed in the Bellhouse model, this 
aspect of the model was modified. From the pressure-difference measurements dis- 
cussed earlier, i t  was determined that a theoretical model in which the pressure and 
kinetic energy density within t'he ventricle are uniform in space and a function of time 
linked to the jet deceleration gives a more accurate, yet simpler estimate of the ventri- 
cular stagnation pressure than that predicted by the Hill vortex model. This also 
appears to be true for the aortic valve. 

Whereas the jet issuing from the valve during the opening phase of the motion 
behaves in a more-or-less two-dimensional fashion, the fluid motion in the ventricle 
towards the valve during closure is essentially axisymmetric. On the basis of this 
observation, we adopt a planar model of the valve for the opening process and an 
axisymmetric model for the closure process. Another assumption which is made is 
that the vertical height 1 of the valve is a constant, in order to reduce mathematical 
complications. Of course, i t  is true only that the cusp length ls of the valve is constant. 
However, we have carried out the analysis both with 1 constant and with 1, constant 
and have found that, although the latter analysis is algebraically considerably more 
complicated than the former, the results are virtually indistinguishable for valves 
which are not unreasonably short. 

T h e  opening process 

The geometry for the opening process of the mitral valve is shown in figure 9. The 
mitral-valve orifice width is 2a and the mean velocity across the orifice is ul. The 
distance between the cusp margins a t  the distal end of the valve is 2r and the flow 
velocity through the valve a t  the distal end is u2. The breadth of the valve is taken 
to be b in the direction perpendicular to the plane of the figure. 

Conservation of mass flow through the valve under the assumption of constant fiuid 
density p gives 

where 

Babu, - 2rbu, = dqydt, ( 1 )  

+'-= ( a + r ) l b  (2 ) 

is the volume of fluid contained within the valve. However, as discussed earlier, it has 
been observed in our data that u1 u2 during valve opening. Using the approximation 
u1 = u2 and with 

h = r / a ,  S = l / U T ,  r = t / T ,  
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FIQURE 9. Analytical configuration of the planar mitral valve for the opening process. 

Valve cusps 

Ascending aorta t u2 

t u1 Left ventricle 

FIGURE 10. Analytical configuration of the aortic valve for the opening process. 

where U is the peak velocity through the valve and T the period of the motion, we 
obtain the following equation for valve opening: 

- r h  = - ( l - A )  
d h  , 2 
dr S (3) 

Given a knowledge of the Strouhal number S and the time dependence of u J U ,  the 
valve motion during opening can be calculated from an integration of (3),  with initial 
condition h = 0 at r = ro (where ro is taken to be the beginning of ventricular diastole). 

The opening process for the aortic valve is considered for the different valve 
geometry shown in figure 10. The distal orifice of the valve is star-shaped and the 
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proximal one is assumed to be hexagonal for mathematical simplicity. By following 
the same derivation procedure as was applied in the case of the mitral valve, we get 

which is exactly the same as (3).  This planar flow relationship was found to predict an 
opening faster than that predicted by an axisymmetric model (truncated-cone 
geometry) derived in a similar fashion. 

The closure process 

The truncated-cone geometry adopted for the closure of the mitral valve is shown in 
figure 11.  It is assumed that the pressure p and the velocity u are uniform across the 
cross-section of the valve. It is also assumed that the valve cusps are inertialess and 
the mean ventricular pressure p ,  acting on the outer surface of the conical valve 
is equal to the mean pressure on the inner surface of the valve (consistent with our 
view of the valve as a passive device which ‘floats’ with the fluid motion). 

Conservation of mass yields 

na2u1 - nr2u2 = d 
where 

and 

From (4) and (5 ) ,  with the same non-dimensionalization as before, 

Conservation of momentum gives 

where 
Fz = na2p1 - m2p2 - n(a2 - r2)  pv 

and the velocity integrals are evaluated with the aid of the relation for the velocity 
at any cross-section x of the valve: 

Using (8) and (9) in (7),  we obtain 

in which, as before, primes denote differentiation with respect to 7. 
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FIGURE 11 .  Analytical configuration of the axisynimetric mitral valve for the closure process. 

Bernoulli's equation along the central streamline of the flow is 

1 au 
(P1+ i P U 3  - (Pz + iP3 = Pf at a x .  

0 
Using (6) to express u2 in term of ul, we obtain 

+ @)2 (h- 1) -3h4 2su11Uh'(l+2h+3h2).  (12) 

Flow within the ventricle 

In  the closure process, we assume that the kinetic energy per unit mass within the 
ventricle is uniform in space, a function of time only, and proportional to the peak 
kinetic energy $U2.  We assume also that tjhe static pressure in the ventricle is equal 
to pz, the pressure a t  the distal end of the valve. Thus we take the kinetic energy of 
the ventricular fluid surrounding the jet to be given by 

(KE), = & K c p U 2 ,  (13) 

where K(7)  is some function of time and < is the ventricular volume. The stagnation 
pressure p ,  in the ventricle is given by 

p ,  = p + i K p U 2  =p2++KpU2. (14) 

d$</dt = na2u1. (15) 

Conservation of mass for the ventricle gives 

Conservation of energy for the ventricle, with q denoting the fluid vector velocity, is 
expressed as 

p g . d A  = 0. (16) 
a 

(+PI2) d$'+IA1 (iPc12) (9 .  dA) + 1 %I+*" d " f A 1  
(ventricular volume) (inlet flow area) (ventricular wall area+ inlet flow area) 
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(Viscous terms are neglected because the time period of diastole is too short to allow 
any extensive dissipation to occur; for example, the diastolic period in our experiments 
was 1-2 s with saline as the working fluid whereas the characteristic dissipation time 
P / V  is of the order of 100 s if I is taken as 1 cm.) Equation (16) eventually reduces to 
the differential equation 

where 

in which 9; is the ventricular volume a t  ri, the time of initiation of valve closure. 
Now the mean pressure p ,  on the valve cusp is assumed to be the average of the 

stagnation pressure p o  (see figure 1 1 )  at the base of the valve and the pressure p 2  
at  the cusp tip: 

so that 

- 
P, = J(Po+P,) = P2+4(JKPU2)> 

(P, -p2) /$pU2 = gh’. (19) 

Substitution of (19) and (12) into (10) yields the differential equation 

- 2 s  -2 A’( 1 + 3h + 4h2) + 1 + 5h + 13h2+ 5h3). (20) 

Equations (17) and (20) are two simultaneous ordinary differential equations 
relating the mitral orifice flow u,/U to the valve closure process, expressed in terms of 
A(?). With ul/ U measured from experiments, the initial conditions for the numerical 
integration of these equations are taken from the valve opening model; a t  7 = ri, say 
h = hi, A’ = hi and in most cases the matching time ri is taken when hi = 0.99 and 
hi, A: = 0. The initial value for K (which is very close to zero) a t  closure is calculated 
from (20) with hi, hi and A; taken from the opening process. This is in contrast to the 
Bellhouse assumption that a Hill-type vortex flow fills the ventricle throughout the 
entire period of diastole. Although the Bellhouse analysis and the present one are 
very similar, they do differ in one important respect. I n  the Bellhouse & Bellhouse 
(1972) analysis the ventricular vortex contributes a pressure difference across the 
valve cusps throughout most of diastole, including a portion of the time interval when 
the valve is fully open and effectively motionless. This can be seen from figure 10 of 
their paper. I n  the present analysis, because K is essentially zero a t  the start of valve 
closure, a pressure difference does not appear across the valve cusps until the onset 
of flow deceleration. This behaviour seems to be in better accord with experimental 
observations, as seen from figure 7, and results in an improved prediction of valve 
motion. 

In the case of aortic-valve motion, we assume that ?r, = p 2  (i.e. K A 0). This is a 
reasonable assumption because, unlike the flow rushing into the enclosed ventricle 

(3 
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during diastole in the case of the mitral valve, the flow entering the aortic sinuses is 
usually a small fraction of that passing through the aortic valve. For this reason, we 
expect negligible kinetic energy recovery in the sinuses and therefore practically no 
pressure variation in them. (This assumption is consistent with the Snuggs & Aggarwal 
(1975) experiment, in which no significant pressure variation was recorded inside their 
semi-cylindrical hollow under steady and unsteady flow.) The assumption K = 0 leads 
to the elimination of (17) altogether, and the first term on the right-hand side of (20) 
drops out. 

4. Results predicted by the present theory 
Computer analyses were performed using the present theory to calculate valve 

motion from experimental trans-valvular flow, and also to study the influence of 
several important parameters involved in the closure process. 

The improvement of the present theory over the Bellhouse & Bellhouse theory is 
clearly demonstrated in figures 12, 13 and 14, in which part (a)  gives the measured 
valve orifice velocities and part ( b )  shows the comparisons between valve motions 
measured in the experiments, those predicted by the Bellhouse & Bellhouse theory 
and those calculated using the present theoretical model. Figures 12 and 13 are plots 
of mitral and aortic data, respectively, taken from the Bellhouse & Bellhouse reports 
(1972, 1969). Figure 14 shows an example of the data obtained in the present studies. 
One can observe in these figures the good agreement between valve motions computed 
using our theoretical model and those obtained from the experimental measurements. 

From the present theory i t  is evident that the mitral velocity, flow deceleration, 
maximum valve opening position, Strouhal number and size of the ventricle might 
exert some influences on valve closure. To study theoretically these influences on the 
efficiency of valve closure, as represented by the amount of regurgitation, we also 
performed a numerical analysis using simple models for the time variation in mitral 
orifice velocity. 

The effect of mitral $ow and flow deceleration 

We assume a flow deceleration model of the form 

ulIU = A-BT, 

where A represents the initial mitral orifice velocity a t  T = 0 and B is the magnitude 
of the deceleration. The initial conditions (at 7 = 0) are assumed to be h = I ,  A' = 0 
and K = 0 with the Strouhal number fixed at 0.03, which is typical for the human 
heart. The mitral orifice radius a was 1.27 cm, the valve length 1 was 1.79 cm and the 
volume before deceleration was 100 ml. The dimensionless regurgitation R is calculated 
from the formula 

where is the time a t  which the velocity passed through zero and r2 is the time 
when the valve closure was complete. Since the velocity function is known and the 
valve motion has been computed using the theory, r1 and r2 can be easily obtained 
from this information. 

Figure 15 shows the results of this theoretical study. It is apparent that  an increase 
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FIGURE 12. (a)  Time-dependent mitral orifice velocity measured in the Bellhouse & Bellhouse 
experiment (1972). (Period T = 2.5s; peak velocity U,. = 50cm/s.) (b )  Time-dependent mitral- 
valve motion. 0, data obtained from the Bellhouse & Bellhouse experiment (1972); ---, motion 
calculated using the Bellhouse & Bellhouse theory (1972); - , motion computed using the 
present theoretical model. (End-systolic volume = 107 ml; orifice area A ,  = 5.07 emz.) 
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FIGURE 13. (a)  Time-dependent aortic orifice velocity measured in the Bellhouse & Bellhouse 
experiment (1969). (Period T = 0.44s; peak velocity U,,, = 71.2cm/s.) ( b )  Time-dependent 
aortic-valve motion. 0, data obtained from the Bellhouse & Bellhouse experiment (1969); -, 
motion compated using the present theoretical model. (Orifice area A ,  = 5.07 cmz.) 
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FIGURE 14. (u)  Time-dependent mitral orifice velocity measured in the present study. (Period 
T = 3.0s;  peak velocity U,, = 17.68cm/s.) ( b )  Time-dependent mitral-valve motion. 0, 
experimental data from the present study; ---. motion calculated using the Bellhouse & Bell- 
house theory (1972); __ , motion computed using the present theoretical model. (Orifice area 
A ,  = 5.07 cm2.) 
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FIGURE 15. Effect of flow deceleration B on mitral regurgitation R 
for various initial mitral velocities A .  
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FIGURE 16. Valve motions AM computed ,from theoretical mitral orifice velocity 
(ul/ U ) M  = exp ( - M7) with M = 100 and 300 respectively. 
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FIGURE 17. Valve motions AN computed from theoretical mitral orifice velocity 
( u l / U ) ~  = 0.2 + 0.8 exp ( - N7) with N = 100 and 300 respectively. 
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FIGURE 17. Valve motions AN computed from theoretical mitral orifice velocity 
( u l / U ) ~  = 0.2 + 0.8 exp ( - N7) with N = 100 and 300 respectively. 

in B or a decrease in A leads to additional regurgitation during valve closure. This 
finding is consistent with our experimental observations; when the stroke volume was 
reduced, reflecting a lowered mitral velocity, or when the heart rate became higher, 
producing a stronger deceleration, the reverse flow recorded during valve closure was 
evidently intensified. 

To investigate the deceleration effect on valve motion, two velocity models with 
an exponentially decreasing characteristic were postulated: 

( u J U ) ~  = e-MT (flow deceleration to zero) 

and 

( u J U ) ~  = 0-2 + 0-8e-NT (flow deceleration to the value 0.2). 
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where M and 0.8N reflect the initial flow deceleration at r = 0. The corresponding 
theoretical valve motions A,,(T) and hN(7) for M = 100 and 300 and N = 100 and 
300 are plotted in figures 16 and 17 respectively. It is clear that the deceleration 
influence exerted on valve motion during closure is a transient action occurring only 
a t  higher flow decelerations. When the mitral velocity has decreased to zero in the 
first case, the valve cusps are closed only to about 30 % of the orifice radius. In  the 
second case, where the flow velocity decreases towards an asymptotic value of 0.2, 
valve reopening is evident even though the velocity is still decreasing. 

T h e  convergent valve 

If the valve cone is somehow restricted from opening fully, such as in the case of 
valvular stenosis, a very interesting result can be illustrated from the theoretical 
analysis. The same linear model u l /U  = A - BT for mitral velocity is employed, 
except that the initial condition for valve closing is now h = 0.5 at r = 0. 

Figure 18 shows the dimensionless regurgitation R as a function of both the flow 
deceleration B and the initial mitral velocity A .  At higher values of B,  R remains a t  
fairly low values regardless of the variation in A. However, a t  low values of B dramatic 
increases in R are apparent, although a decrease in A seems to reduce R considerably. 
In  the case of the physiological valve, the dimensionless flow deceleration B is estimated 
to be between 5 and 50. With this estimation and from figure 18, one can see that a 
significant amount of regurgitation could occur during valve closure for a stenotic 
convergent valve. One should note that this is a fluid-dynamical consequence rather 
than one due to a change in valve cusp flexibility. (Of course, thickening of valve cusps 
would also hinder valve functioning.) 

T h e  effect of Strouhal number and ventricular volume 

In  this investigation, we assume the mitral orifice velocity to be of the form 

UI/u = 1-BT 

with the initial conditions h = 1, A' = 0 and K = 0 a t  7 = 0. The initial ventricular 
volume 6 is made dimensionless by the factor n-a21, which is the volume bounded 
by the fully open valve cusps, thus $2 = Vo/n-a21. 

To examine the volume effect, valve motion is calculated from the theory assuming 
S = 0.01, B = 10 and I00 and using the assumed mitral velocity as input data. The 
results shown in figure 19 indicate that enlargement of the ventricular volume would 
delay the valve closure only a t  low flow decelerations, and no appreciable effect can 
be seen when the flow deceleration is strong. One can also see that a t  low flow decelera- 
tions the actual delay in complete valve closure is relatively small since the closing 
velocity of valve cusps a t  late diastole increases t,o compensate for the delay during 
early closure. 

The regurgitation during valve closure was also computed as a function of S and 
9; for a given value of B (figure 20). It is evident that, in general, an increase in S 
would lead to a rise in regurgit,ation, whereas the volume effect (three orders of 
magnitude in volume variation from 1 to 1000) has little influence on the amount of 
reverse flow. However, a t  lower values of B the variation in backflow volume, in 
response to a change in ventricular volume, tends to increase slightly. 
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FIGURE 19. Volume effect on valve motion for two values of the flow 
deceleration: (a) B = 10; (b) B = 100. 
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FIGURE 20. sffeet of Strouhal number S on mitral regurgitation R for various values of t,he 

flow deceleration I3 and ventricular volume V,. --, V, = 1; ---, V,, = 1000. 

All these theoretical findings agree qualitatively with the experimental results 
reported earlier. 

5. Conclusions 
The experimental and theoretical studies presented have provided a better under- 

standing of heart-valve dynamics associated with trans-valvular flow. We believe 
that the motion of a healthy human heart valve depends mainly on the fluid motion 
passing between its cusps, although, in the case of the atrioventricular valves, it  also 
responds slightly to the force contributed by the kinetic energy recovery process 
within the ventricle. 

I n  the acceleration phase of the vatve flow, valve cusps open to a position nearly 
parallel to the essentially unidirectional jet issuing from the orifice. Hence no restraints 
are necessary to prevent the valve cusps from opening too far during ventricular 
diastole. 

The primary mechanism for efficient valve closure is the adverse pressure gradient 
related to the deceleration of the valve flow. The size of the ventricle has little dynamical 
effect on valve efficiency, although it slightly affects the closure movement of the 
valve a t  low flow decelerations. 

In  the theoretical studies, we have shown that it, is possible to modify the Bellhouse 
& Talbot theory for practical application. The mathematical analysis, which accurately 
predicts valve motion from experimental valve flow, also gives detailed qualitative 
descriptions of the influences produced by major physical parameters. In  particular, 
a reason for the increase in regurgitation of a stenotic valve was illustrated. Other 
clinical applications of the theory will be reported subsequently. 

This work was supported by the National Science Foundation under Grant No. 
ENG-73-03970. 
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P I G U W  5 .  Sequeiitial photographs of flow patterns inside model ventricle without a mitral valve. 
(a )  t = 200ms, ( b )  t = 500ms, (c) t = l600ms, (d) t = 1900ms, 250ms after the onset of flow 
deceleration, ( e )  t = 1950ms, (f) t = 2000ms, at onset of ventricular systole. ( t  = time measured 
with respect to onset of ventricular diastole; white dot indicates approximate location of a 
stagnation point; wliite arrows indicate directions of flow.) 

LEE AND TALBOT 



Journal of Fluid Mechanics, Vol. 91, part 1 Plate 2 

FIGURE 6. Sequential photographs of flow patterns inside model ventricle with a mitral valve. 
(a)  t = 800ms, ( b )  t = lGOOms. (c) t = 1800ms, 150nis after the onset of flow deceleration, (d) 
t = 1850ms, ( e )  t = 1900ms, [ , f )  t = 1950ms, 50ms before onset of ventricular systole. (Symbols 
same as in figure 5. )  
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